Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies.
نویسندگان
چکیده
Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion is used to derive coarse-grained potentials with 2-6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.
منابع مشابه
Systematic Coarse-Graining of Microscale Polymer Models as Effective Elastic Chains
One of the key goals of macromolecular modeling is to elucidate how macroscale physical properties arise from the microscale behavior of the polymer constituents. For many biological and industrial applications, a direct simulation approach is impractical due to to the wide range of length scales that must be spanned by the model, necessitating physically sound and practically relevant procedur...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کاملMechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model
In this work, a coarse-grained (CG) model of carbon nanotube (CNT) reinforced polymer matrix composites is developed. A distinguishing feature of the CG model is the ability to capture interactions between polymer chains and nanotubes. The CG potentials for nanotubes and polymer chains are calibrated using the strain energy conservation between CG models and full atomistic systems. The applicab...
متن کاملError Control and Analysis in Coarse - Graining of Stochastic Lattice Dynamics
The coarse-grained Monte Carlo (CGMC) algorithm was originally proposed in the series of works [15, 16]. In this paper we further investigate the approximation properties of the coarse-graining procedure and relation between the coarse-grained and microscopic processes. We provide both analytical and numerical evidence that the hierarchy of the coarse models is built in a systematic way that al...
متن کاملCoarse-Grained Models for Protein-Cell Membrane Interactions
The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 116 5 شماره
صفحات -
تاریخ انتشار 2016